Correction: Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization
نویسندگان
چکیده
Uncovering community structures is important for understanding networks. Currently, several nonnegative matrix factorization algorithms have been proposed for discovering community structure in complex networks. However, these algorithms exhibit some drawbacks, such as unstable results and inefficient running times. In view of the problems, a novel approach that utilizes an initialized Bayesian nonnegative matrix factorization model for determining community membership is proposed. First, based on singular value decomposition, we obtain simple initialized matrix factorizations from approximate decompositions of the complex network's adjacency matrix. Then, within a few iterations, the final matrix factorizations are achieved by the Bayesian nonnegative matrix factorization method with the initialized matrix factorizations. Thus, the network's community structure can be determined by judging the classification of nodes with a final matrix factor. Experimental results show that the proposed method is highly accurate and offers competitive performance to that of the state-of-the-art methods even though it is not designed for the purpose of modularity maximization.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملBayesian Nonnegative Harmonic-Temporal Factorization and Its Application to Multipitch Analysis
Since important musical features are mutually dependent, their relations should be analyzed simultaneously. Their Bayesian analysis is particularly important to reveal their statistical relation. As the first step for a unified music content analyzer, we focus on the harmonic and temporal structures of the wavelet spectrogram obtained from harmonic sounds. In this paper, we present a new Bayesi...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کامل